int getpriority(int which, id_t who);
int setpriority(int which, id_t who, int prio);
The value which is one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, and who is interpreted relative to which (a process identifier for PRIO_PROCESS, process group identifier for PRIO_PGRP, and a user ID for PRIO_USER). A zero value for who denotes (respectively) the calling process, the process group of the calling process, or the real user ID of the calling process.
The prio argument is a value in the range -20 to 19 (but see NOTES below). with -20 being the highest priority and 19 being the lowest priority. Attempts to set a priority outside this range are silently clamped to the range. The default priority is 0; lower values give a process a higher scheduling priority.
The getpriority() call returns the highest priority (lowest numerical value) enjoyed by any of the specified processes. The setpriority() call sets the priorities of all of the specified processes to the specified value.
Traditionally, only a privileged process could lower the nice value (i.e., set a higher priority). However, since Linux 2.6.12, an unprivileged process can decrease the nice value of a target process that has a suitable RLIMIT_NICE soft limit; see getrlimit(2) for details.
Since a successful call to getpriority() can legitimately return the value -1, it is necessary to clear the external variable errno prior to the call, then check errno afterward to determine if -1 is an error or a legitimate value.
setpriority() returns 0 on success. On error, it returns -1 and sets errno to indicate the cause of the error.
In addition to the errors indicated above, setpriority() may fail if:
Note: the addition of the "autogroup" feature in Linux 2.6.38 means that the nice value no longer has its traditional effect in many circumstances. For details, see sched(7).
A child created by fork(2) inherits its parent's nice value. The nice value is preserved across execve(2).
The details on the condition for EPERM depend on the system. The above description is what POSIX.1-2001 says, and seems to be followed on all System V-like systems. Linux kernels before 2.6.12 required the real or effective user ID of the caller to match the real user of the process who (instead of its effective user ID). Linux 2.6.12 and later require the effective user ID of the caller to match the real or effective user ID of the process who. All BSD-like systems (SunOS 4.1.3, Ultrix 4.2, 4.3BSD, FreeBSD 4.3, OpenBSD-2.5, ...) behave in the same manner as Linux 2.6.12 and later.
Including <sys/time.h> is not required these days, but increases portability. (Indeed, <sys/resource.h> defines the rusage structure with fields of type struct timeval defined in <sys/time.h>.)
Documentation/scheduler/sched-nice-design.txt in the Linux kernel source tree (since Linux 2.6.23)