This page provides background and tutorial information on the use of these system calls. For details of the arguments and semantics of select() and pselect(), see select(2).
Now, somewhere in the main loop will be a conditional to check the global flag. So we must ask: what if a signal arrives after the conditional, but before the select() call? The answer is that select() would block indefinitely, even though an event is actually pending. This race condition is solved by the pselect() call. This call can be used to set the signal mask to a set of signals that are to be received only within the pselect() call. For instance, let us say that the event in question was the exit of a child process. Before the start of the main loop, we would block SIGCHLD using sigprocmask(2). Our pselect() call would enable SIGCHLD by using an empty signal mask. Our program would look like:
static volatile sig_atomic_t got_SIGCHLD = 0;
static void
child_sig_handler(int sig)
{
got_SIGCHLD = 1;
}
int
main(int argc, char *argv[])
{
sigset_t sigmask, empty_mask;
struct sigaction sa;
fd_set readfds, writefds, exceptfds;
int r;
sigemptyset(&sigmask);
sigaddset(&sigmask, SIGCHLD);
if (sigprocmask(SIG_BLOCK, &sigmask, NULL) == -1) {
perror("sigprocmask");
exit(EXIT_FAILURE);
}
sa.sa_flags = 0;
sa.sa_handler = child_sig_handler;
sigemptyset(&sa.sa_mask);
if (sigaction(SIGCHLD, &sa, NULL) == -1) {
perror("sigaction");
exit(EXIT_FAILURE);
}
sigemptyset(&empty_mask);
for (;;) { /* main loop */
/* Initialize readfds, writefds, and exceptfds
before the pselect() call. (Code omitted.) */
r = pselect(nfds, &readfds, &writefds, &exceptfds,
NULL, &empty_mask);
if (r == -1 && errno != EINTR) {
/* Handle error */
}
if (got_SIGCHLD) {
got_SIGCHLD = 0;
/* Handle signalled event here; e.g., wait() for all
terminated children. (Code omitted.) */
}
/* main body of program */
}
}
The poll(2) system call has the same functionality as select(), and is somewhat more efficient when monitoring sparse file descriptor sets. It is nowadays widely available, but historically was less portable than select().
The Linux-specific epoll(7) API provides an interface that is more efficient than select(2) and poll(2) when monitoring large numbers of file descriptors.
#include <stdlib.h> #include <stdio.h> #include <unistd.h> #include <sys/select.h> #include <string.h> #include <signal.h> #include <sys/socket.h> #include <netinet/in.h> #include <arpa/inet.h> #include <errno.h>
static int forward_port;
#undef max #define max(x,y) ((x) > (y) ? (x) : (y))
static int
listen_socket(int listen_port)
{
struct sockaddr_in addr;
int lfd;
int yes;
lfd = socket(AF_INET, SOCK_STREAM, 0);
if (lfd == -1) {
perror("socket");
return -1;
}
yes = 1;
if (setsockopt(lfd, SOL_SOCKET, SO_REUSEADDR,
&yes, sizeof(yes)) == -1) {
perror("setsockopt");
close(lfd);
return -1;
}
memset(&addr, 0, sizeof(addr));
addr.sin_port = htons(listen_port);
addr.sin_family = AF_INET;
if (bind(lfd, (struct sockaddr *) &addr, sizeof(addr)) == -1) {
perror("bind");
close(lfd);
return -1;
}
printf("accepting connections on port %d\n", listen_port);
listen(lfd, 10);
return lfd;
}
static int
connect_socket(int connect_port, char *address)
{
struct sockaddr_in addr;
int cfd;
cfd = socket(AF_INET, SOCK_STREAM, 0);
if (cfd == -1) {
perror("socket");
return -1;
}
memset(&addr, 0, sizeof(addr));
addr.sin_port = htons(connect_port);
addr.sin_family = AF_INET;
if (!inet_aton(address, (struct in_addr *) &addr.sin_addr.s_addr)) {
fprintf(stderr, "inet_aton(): bad IP address format\n");
close(cfd);
return -1;
}
if (connect(cfd, (struct sockaddr *) &addr, sizeof(addr)) == -1) {
perror("connect()");
shutdown(cfd, SHUT_RDWR);
close(cfd);
return -1;
}
return cfd;
}
#define SHUT_FD1 do { \
if (fd1 >= 0) { \
shutdown(fd1, SHUT_RDWR); \
close(fd1); \
fd1 = -1; \
} \
} while (0)
#define SHUT_FD2 do { \
if (fd2 >= 0) { \
shutdown(fd2, SHUT_RDWR); \
close(fd2); \
fd2 = -1; \
} \
} while (0)
#define BUF_SIZE 1024
int
main(int argc, char *argv[])
{
int h;
int fd1 = -1, fd2 = -1;
char buf1[BUF_SIZE], buf2[BUF_SIZE];
int buf1_avail = 0, buf1_written = 0;
int buf2_avail = 0, buf2_written = 0;
if (argc != 4) {
fprintf(stderr, "Usage\n\tfwd <listen-port> "
"<forward-to-port> <forward-to-ip-address>\n");
exit(EXIT_FAILURE);
}
signal(SIGPIPE, SIG_IGN);
forward_port = atoi(argv[2]);
h = listen_socket(atoi(argv[1]));
if (h == -1)
exit(EXIT_FAILURE);
for (;;) {
int ready, nfds = 0;
ssize_t nbytes;
fd_set readfds, writefds, exceptfds;
FD_ZERO(&readfds);
FD_ZERO(&writefds);
FD_ZERO(&exceptfds);
FD_SET(h, &readfds);
nfds = max(nfds, h);
if (fd1 > 0 && buf1_avail < BUF_SIZE)
FD_SET(fd1, &readfds);
/* Note: nfds is updated below, when fd1 is added to
exceptfds. */
if (fd2 > 0 && buf2_avail < BUF_SIZE)
FD_SET(fd2, &readfds);
if (fd1 > 0 && buf2_avail - buf2_written > 0)
FD_SET(fd1, &writefds);
if (fd2 > 0 && buf1_avail - buf1_written > 0)
FD_SET(fd2, &writefds);
if (fd1 > 0) {
FD_SET(fd1, &exceptfds);
nfds = max(nfds, fd1);
}
if (fd2 > 0) {
FD_SET(fd2, &exceptfds);
nfds = max(nfds, fd2);
}
ready = select(nfds + 1, &readfds, &writefds, &exceptfds, NULL);
if (ready == -1 && errno == EINTR)
continue;
if (ready == -1) {
perror("select()");
exit(EXIT_FAILURE);
}
if (FD_ISSET(h, &readfds)) {
socklen_t addrlen;
struct sockaddr_in client_addr;
int fd;
addrlen = sizeof(client_addr);
memset(&client_addr, 0, addrlen);
fd = accept(h, (struct sockaddr *) &client_addr, &addrlen);
if (fd == -1) {
perror("accept()");
} else {
SHUT_FD1;
SHUT_FD2;
buf1_avail = buf1_written = 0;
buf2_avail = buf2_written = 0;
fd1 = fd;
fd2 = connect_socket(forward_port, argv[3]);
if (fd2 == -1)
SHUT_FD1;
else
printf("connect from %s\n",
inet_ntoa(client_addr.sin_addr));
/* Skip any events on the old, closed file
descriptors. */
continue;
}
}
/* NB: read OOB data before normal reads */
if (fd1 > 0 && FD_ISSET(fd1, &exceptfds)) {
char c;
nbytes = recv(fd1, &c, 1, MSG_OOB);
if (nbytes < 1)
SHUT_FD1;
else
send(fd2, &c, 1, MSG_OOB);
}
if (fd2 > 0 && FD_ISSET(fd2, &exceptfds)) {
char c;
nbytes = recv(fd2, &c, 1, MSG_OOB);
if (nbytes < 1)
SHUT_FD2;
else
send(fd1, &c, 1, MSG_OOB);
}
if (fd1 > 0 && FD_ISSET(fd1, &readfds)) {
nbytes = read(fd1, buf1 + buf1_avail,
BUF_SIZE - buf1_avail);
if (nbytes < 1)
SHUT_FD1;
else
buf1_avail += nbytes;
}
if (fd2 > 0 && FD_ISSET(fd2, &readfds)) {
nbytes = read(fd2, buf2 + buf2_avail,
BUF_SIZE - buf2_avail);
if (nbytes < 1)
SHUT_FD2;
else
buf2_avail += nbytes;
}
if (fd1 > 0 && FD_ISSET(fd1, &writefds) && buf2_avail > 0) {
nbytes = write(fd1, buf2 + buf2_written,
buf2_avail - buf2_written);
if (nbytes < 1)
SHUT_FD1;
else
buf2_written += nbytes;
}
if (fd2 > 0 && FD_ISSET(fd2, &writefds) && buf1_avail > 0) {
nbytes = write(fd2, buf1 + buf1_written,
buf1_avail - buf1_written);
if (nbytes < 1)
SHUT_FD2;
else
buf1_written += nbytes;
}
/* Check if write data has caught read data */
if (buf1_written == buf1_avail)
buf1_written = buf1_avail = 0;
if (buf2_written == buf2_avail)
buf2_written = buf2_avail = 0;
/* One side has closed the connection, keep
writing to the other side until empty */
if (fd1 < 0 && buf1_avail - buf1_written == 0)
SHUT_FD2;
if (fd2 < 0 && buf2_avail - buf2_written == 0)
SHUT_FD1;
}
exit(EXIT_SUCCESS);
}
The above program properly forwards most kinds of TCP connections including OOB signal data transmitted by telnet servers. It handles the tricky problem of having data flow in both directions simultaneously. You might think it more efficient to use a fork(2) call and devote a thread to each stream. This becomes more tricky than you might suspect. Another idea is to set nonblocking I/O using fcntl(2). This also has its problems because you end up using inefficient timeouts.
The program does not handle more than one simultaneous connection at a time, although it could easily be extended to do this with a linked list of buffers---one for each connection. At the moment, new connections cause the current connection to be dropped.