#include <openssl/bn.h> int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx); int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx); int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d, BN_CTX *ctx); int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); int BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m, BN_CTX *ctx); int BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m, BN_CTX *ctx); int BN_mod_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m, BN_CTX *ctx); int BN_mod_sqr(BIGNUM *r, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx); int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx); int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
BN_sub() subtracts b from a and places the result in r ("r=a-b"). r may be the same BIGNUM as a or b.
BN_mul() multiplies a and b and places the result in r ("r=a*b"). r may be the same BIGNUM as a or b. For multiplication by powers of 2, use BN_lshift(3).
BN_sqr() takes the square of a and places the result in r ("r=a^2"). r and a may be the same BIGNUM. This function is faster than BN_mul(r,a,a).
BN_div() divides a by d and places the result in dv and the remainder in rem ("dv=a/d, rem=a%d"). Either of dv and rem may be NULL, in which case the respective value is not returned. The result is rounded towards zero; thus if a is negative, the remainder will be zero or negative. For division by powers of 2, use BN_rshift(3).
BN_mod() corresponds to BN_div() with dv set to NULL.
BN_nnmod() reduces a modulo m and places the non-negative remainder in r.
BN_mod_add() adds a to b modulo m and places the non-negative result in r.
BN_mod_sub() subtracts b from a modulo m and places the non-negative result in r.
BN_mod_mul() multiplies a by b and finds the non-negative remainder respective to modulus m ("r=(a*b) mod m"). r may be the same BIGNUM as a or b. For more efficient algorithms for repeated computations using the same modulus, see BN_mod_mul_montgomery(3) and BN_mod_mul_reciprocal(3).
BN_mod_sqr() takes the square of a modulo m and places the result in r.
BN_exp() raises a to the p-th power and places the result in r ("r=a^p"). This function is faster than repeated applications of BN_mul().
BN_mod_exp() computes a to the p-th power modulo m ("r=a^p % m"). This function uses less time and space than BN_exp(). Do not call this function when m is even and any of the parameters have the BN_FLG_CONSTTIME flag set.
BN_gcd() computes the greatest common divisor of a and b and places the result in r. r may be the same BIGNUM as a or b.
For all functions, ctx is a previously allocated BN_CTX used for temporary variables; see BN_CTX_new(3).
Unless noted otherwise, the result BIGNUM must be different from the arguments.
Licensed under the OpenSSL license (the ``License''). You may not use this file except in compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or at <https://www.openssl.org/source/license.html>.