subroutine cgetrf (M, N, A, LDA, IPIV, INFO)
CGETRF VARIANT: Crout Level 3 BLAS version of the algorithm.
CGETRF VARIANT: Crout Level 3 BLAS version of the algorithm. Purpose:
CGETRF computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges. The factorization has the form A = P * L * U where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n). This is the Crout Level 3 BLAS version of the algorithm.
Parameters:
M is INTEGER The number of rows of the matrix A. M >= 0.
N
N is INTEGER The number of columns of the matrix A. N >= 0.
A
A is COMPLEX array, dimension (LDA,N) On entry, the M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).
IPIV
IPIV is INTEGER array, dimension (min(M,N)) The pivot indices; for 1 <= i <= min(M,N), row i of the matrix was interchanged with row IPIV(i).
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.
Author:
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
Definition at line 102 of file VARIANTS/lu/CR/cgetrf.f.
Generated automatically by Doxygen for LAPACK from the source code.