cgeqr2p.f

Section: LAPACK (3)
Updated: Tue Nov 14 2017
Page Index
 

NAME

cgeqr2p.f  

SYNOPSIS


 

Functions/Subroutines


subroutine cgeqr2p (M, N, A, LDA, TAU, WORK, INFO)
CGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm.  

Function/Subroutine Documentation

 

subroutine cgeqr2p (integer M, integer N, complex, dimension( lda, * ) A, integer LDA, complex, dimension( * ) TAU, complex, dimension( * ) WORK, integer INFO)

CGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm.

Purpose:

 CGEQR2P computes a QR factorization of a complex m by n matrix A:
 A = Q * R. The diagonal entries of R are real and nonnegative.


 

Parameters:

M

          M is INTEGER
          The number of rows of the matrix A.  M >= 0.


N

          N is INTEGER
          The number of columns of the matrix A.  N >= 0.


A

          A is COMPLEX array, dimension (LDA,N)
          On entry, the m by n matrix A.
          On exit, the elements on and above the diagonal of the array
          contain the min(m,n) by n upper trapezoidal matrix R (R is
          upper triangular if m >= n). The diagonal entries of R are
          real and nonnegative; the elements below the diagonal,
          with the array TAU, represent the unitary matrix Q as a
          product of elementary reflectors (see Further Details).


LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).


TAU

          TAU is COMPLEX array, dimension (min(M,N))
          The scalar factors of the elementary reflectors (see Further
          Details).


WORK

          WORK is COMPLEX array, dimension (N)


INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value


 

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

December 2016

Further Details:

  The matrix Q is represented as a product of elementary reflectors

     Q = H(1) H(2) . . . H(k), where k = min(m,n).

  Each H(i) has the form

     H(i) = I - tau * v * v**H

  where tau is a complex scalar, and v is a complex vector with
  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
  and tau in TAU(i).

 See Lapack Working Note 203 for details


 

Definition at line 126 of file cgeqr2p.f.  

Author

Generated automatically by Doxygen for LAPACK from the source code.


 

Index

NAME
SYNOPSIS
Functions/Subroutines
Function/Subroutine Documentation
subroutine cgeqr2p (integer M, integer N, complex, dimension( lda, * ) A, integer LDA, complex, dimension( * ) TAU, complex, dimension( * ) WORK, integer INFO)
Author