cpbequ.f

Section: LAPACK (3)
Updated: Tue Nov 14 2017
Page Index
 

NAME

cpbequ.f  

SYNOPSIS


 

Functions/Subroutines


subroutine cpbequ (UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, INFO)
CPBEQU  

Function/Subroutine Documentation

 

subroutine cpbequ (character UPLO, integer N, integer KD, complex, dimension( ldab, * ) AB, integer LDAB, real, dimension( * ) S, real SCOND, real AMAX, integer INFO)

CPBEQU

Purpose:

 CPBEQU computes row and column scalings intended to equilibrate a
 Hermitian positive definite band matrix A and reduce its condition
 number (with respect to the two-norm).  S contains the scale factors,
 S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
 elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal.  This
 choice of S puts the condition number of B within a factor N of the
 smallest possible condition number over all possible diagonal
 scalings.


 

Parameters:

UPLO

          UPLO is CHARACTER*1
          = 'U':  Upper triangular of A is stored;
          = 'L':  Lower triangular of A is stored.


N

          N is INTEGER
          The order of the matrix A.  N >= 0.


KD

          KD is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.


AB

          AB is COMPLEX array, dimension (LDAB,N)
          The upper or lower triangle of the Hermitian band matrix A,
          stored in the first KD+1 rows of the array.  The j-th column
          of A is stored in the j-th column of the array AB as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).


LDAB

          LDAB is INTEGER
          The leading dimension of the array A.  LDAB >= KD+1.


S

          S is REAL array, dimension (N)
          If INFO = 0, S contains the scale factors for A.


SCOND

          SCOND is REAL
          If INFO = 0, S contains the ratio of the smallest S(i) to
          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too
          large nor too small, it is not worth scaling by S.


AMAX

          AMAX is REAL
          Absolute value of largest matrix element.  If AMAX is very
          close to overflow or very close to underflow, the matrix
          should be scaled.


INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = i, the i-th diagonal element is nonpositive.


 

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

December 2016

Definition at line 132 of file cpbequ.f.  

Author

Generated automatically by Doxygen for LAPACK from the source code.


 

Index

NAME
SYNOPSIS
Functions/Subroutines
Function/Subroutine Documentation
subroutine cpbequ (character UPLO, integer N, integer KD, complex, dimension( ldab, * ) AB, integer LDAB, real, dimension( * ) S, real SCOND, real AMAX, integer INFO)
Author