subroutine ctgex2 (WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ, J1, INFO)
CTGEX2 swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an unitary equivalence transformation.
CTGEX2 swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an unitary equivalence transformation.
Purpose:
CTGEX2 swaps adjacent diagonal 1 by 1 blocks (A11,B11) and (A22,B22) in an upper triangular matrix pair (A, B) by an unitary equivalence transformation. (A, B) must be in generalized Schur canonical form, that is, A and B are both upper triangular. Optionally, the matrices Q and Z of generalized Schur vectors are updated. Q(in) * A(in) * Z(in)**H = Q(out) * A(out) * Z(out)**H Q(in) * B(in) * Z(in)**H = Q(out) * B(out) * Z(out)**H
Parameters:
WANTQ is LOGICAL .TRUE. : update the left transformation matrix Q; .FALSE.: do not update Q.
WANTZ
WANTZ is LOGICAL .TRUE. : update the right transformation matrix Z; .FALSE.: do not update Z.
N
N is INTEGER The order of the matrices A and B. N >= 0.
A
A is COMPLEX array, dimension (LDA,N) On entry, the matrix A in the pair (A, B). On exit, the updated matrix A.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
B
B is COMPLEX array, dimension (LDB,N) On entry, the matrix B in the pair (A, B). On exit, the updated matrix B.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
Q
Q is COMPLEX array, dimension (LDQ,N) If WANTQ = .TRUE, on entry, the unitary matrix Q. On exit, the updated matrix Q. Not referenced if WANTQ = .FALSE..
LDQ
LDQ is INTEGER The leading dimension of the array Q. LDQ >= 1; If WANTQ = .TRUE., LDQ >= N.
Z
Z is COMPLEX array, dimension (LDZ,N) If WANTZ = .TRUE, on entry, the unitary matrix Z. On exit, the updated matrix Z. Not referenced if WANTZ = .FALSE..
LDZ
LDZ is INTEGER The leading dimension of the array Z. LDZ >= 1; If WANTZ = .TRUE., LDZ >= N.
J1
J1 is INTEGER The index to the first block (A11, B11).
INFO
INFO is INTEGER =0: Successful exit. =1: The transformed matrix pair (A, B) would be too far from generalized Schur form; the problem is ill- conditioned.
Author:
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
Further Details:
Contributors:
References:
Definition at line 192 of file ctgex2.f.
Generated automatically by Doxygen for LAPACK from the source code.