dgeqr2.f

Section: LAPACK (3)
Updated: Tue Nov 14 2017
Page Index
 

NAME

dgeqr2.f  

SYNOPSIS


 

Functions/Subroutines


subroutine dgeqr2 (M, N, A, LDA, TAU, WORK, INFO)
DGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.  

Function/Subroutine Documentation

 

subroutine dgeqr2 (integer M, integer N, double precision, dimension( lda, * ) A, integer LDA, double precision, dimension( * ) TAU, double precision, dimension( * ) WORK, integer INFO)

DGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.

Purpose:

 DGEQR2 computes a QR factorization of a real m by n matrix A:
 A = Q * R.


 

Parameters:

M

          M is INTEGER
          The number of rows of the matrix A.  M >= 0.


N

          N is INTEGER
          The number of columns of the matrix A.  N >= 0.


A

          A is DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the m by n matrix A.
          On exit, the elements on and above the diagonal of the array
          contain the min(m,n) by n upper trapezoidal matrix R (R is
          upper triangular if m >= n); the elements below the diagonal,
          with the array TAU, represent the orthogonal matrix Q as a
          product of elementary reflectors (see Further Details).


LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).


TAU

          TAU is DOUBLE PRECISION array, dimension (min(M,N))
          The scalar factors of the elementary reflectors (see Further
          Details).


WORK

          WORK is DOUBLE PRECISION array, dimension (N)


INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value


 

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

December 2016

Further Details:

  The matrix Q is represented as a product of elementary reflectors

     Q = H(1) H(2) . . . H(k), where k = min(m,n).

  Each H(i) has the form

     H(i) = I - tau * v * v**T

  where tau is a real scalar, and v is a real vector with
  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
  and tau in TAU(i).


 

Definition at line 123 of file dgeqr2.f.  

Author

Generated automatically by Doxygen for LAPACK from the source code.


 

Index

NAME
SYNOPSIS
Functions/Subroutines
Function/Subroutine Documentation
subroutine dgeqr2 (integer M, integer N, double precision, dimension( lda, * ) A, integer LDA, double precision, dimension( * ) TAU, double precision, dimension( * ) WORK, integer INFO)
Author
LinuxReviews : manual page archive : man3