subroutine dlarf (SIDE, M, N, V, INCV, TAU, C, LDC, WORK)
DLARF applies an elementary reflector to a general rectangular matrix.
DLARF applies an elementary reflector to a general rectangular matrix.
Purpose:
DLARF applies a real elementary reflector H to a real m by n matrix C, from either the left or the right. H is represented in the form H = I - tau * v * v**T where tau is a real scalar and v is a real vector. If tau = 0, then H is taken to be the unit matrix.
Parameters:
SIDE is CHARACTER*1 = 'L': form H * C = 'R': form C * H
M
M is INTEGER The number of rows of the matrix C.
N
N is INTEGER The number of columns of the matrix C.
V
V is DOUBLE PRECISION array, dimension (1 + (M-1)*abs(INCV)) if SIDE = 'L' or (1 + (N-1)*abs(INCV)) if SIDE = 'R' The vector v in the representation of H. V is not used if TAU = 0.
INCV
INCV is INTEGER The increment between elements of v. INCV <> 0.
TAU
TAU is DOUBLE PRECISION The value tau in the representation of H.
C
C is DOUBLE PRECISION array, dimension (LDC,N) On entry, the m by n matrix C. On exit, C is overwritten by the matrix H * C if SIDE = 'L', or C * H if SIDE = 'R'.
LDC
LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M).
WORK
WORK is DOUBLE PRECISION array, dimension (N) if SIDE = 'L' or (M) if SIDE = 'R'
Author:
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
Definition at line 126 of file dlarf.f.
Generated automatically by Doxygen for LAPACK from the source code.