subroutine dlarrc (JOBT, N, VL, VU, D, E, PIVMIN, EIGCNT, LCNT, RCNT, INFO)
DLARRC computes the number of eigenvalues of the symmetric tridiagonal matrix.
DLARRC computes the number of eigenvalues of the symmetric tridiagonal matrix.
Purpose:
Find the number of eigenvalues of the symmetric tridiagonal matrix T that are in the interval (VL,VU] if JOBT = 'T', and of L D L^T if JOBT = 'L'.
Parameters:
JOBT is CHARACTER*1 = 'T': Compute Sturm count for matrix T. = 'L': Compute Sturm count for matrix L D L^T.
N
N is INTEGER The order of the matrix. N > 0.
VL
VL is DOUBLE PRECISION The lower bound for the eigenvalues.
VU
VU is DOUBLE PRECISION The upper bound for the eigenvalues.
D
D is DOUBLE PRECISION array, dimension (N) JOBT = 'T': The N diagonal elements of the tridiagonal matrix T. JOBT = 'L': The N diagonal elements of the diagonal matrix D.
E
E is DOUBLE PRECISION array, dimension (N) JOBT = 'T': The N-1 offdiagonal elements of the matrix T. JOBT = 'L': The N-1 offdiagonal elements of the matrix L.
PIVMIN
PIVMIN is DOUBLE PRECISION The minimum pivot in the Sturm sequence for T.
EIGCNT
EIGCNT is INTEGER The number of eigenvalues of the symmetric tridiagonal matrix T that are in the interval (VL,VU]
LCNT
LCNT is INTEGER
RCNT
RCNT is INTEGER The left and right negcounts of the interval.
INFO
INFO is INTEGER
Author:
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
Contributors:
Definition at line 139 of file dlarrc.f.
Generated automatically by Doxygen for LAPACK from the source code.