subroutine dptrfs (N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR, BERR, WORK, INFO)
DPTRFS
DPTRFS
Purpose:
DPTRFS improves the computed solution to a system of linear equations when the coefficient matrix is symmetric positive definite and tridiagonal, and provides error bounds and backward error estimates for the solution.
Parameters:
N is INTEGER The order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
D
D is DOUBLE PRECISION array, dimension (N) The n diagonal elements of the tridiagonal matrix A.
E
E is DOUBLE PRECISION array, dimension (N-1) The (n-1) subdiagonal elements of the tridiagonal matrix A.
DF
DF is DOUBLE PRECISION array, dimension (N) The n diagonal elements of the diagonal matrix D from the factorization computed by DPTTRF.
EF
EF is DOUBLE PRECISION array, dimension (N-1) The (n-1) subdiagonal elements of the unit bidiagonal factor L from the factorization computed by DPTTRF.
B
B is DOUBLE PRECISION array, dimension (LDB,NRHS) The right hand side matrix B.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
X
X is DOUBLE PRECISION array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by DPTTRS. On exit, the improved solution matrix X.
LDX
LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).
FERR
FERR is DOUBLE PRECISION array, dimension (NRHS) The forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j).
BERR
BERR is DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).
WORK
WORK is DOUBLE PRECISION array, dimension (2*N)
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters:
ITMAX is the maximum number of steps of iterative refinement.
Author:
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
Definition at line 165 of file dptrfs.f.
Generated automatically by Doxygen for LAPACK from the source code.