GLEVALMESH
Section: Misc. Reference Manual Pages (3G)
Page Index
NAME
glEvalMesh1, glEvalMesh2
- compute a one- or two-dimensional grid of points or lines
C SPECIFICATION
void
glEvalMesh1(
GLenum
mode,
GLint i1,
GLint i2 )
delim $$
PARAMETERS
- mode
-
In glEvalMesh1, specifies whether to compute a one-dimensional mesh of points or lines.
Symbolic constants
GL_POINT and
GL_LINE are accepted.
- i1, i2
-
Specify the first and last integer values for grid domain variable $i$.
C SPECIFICATION
void
glEvalMesh2(
GLenum
mode,
GLint i1,
GLint i2,
GLint j1,
GLint j2 )
PARAMETERS
- mode
-
In glEvalMesh2, specifies whether to compute a two-dimensional mesh of points, lines,
or polygons.
Symbolic constants
GL_POINT,
GL_LINE, and
GL_FILL are accepted.
- i1, i2
-
Specify the first and last integer values for grid domain variable $i$.
- j1, j2
-
Specify the first and last integer values for grid domain variable $j$.
DESCRIPTION
glMapGrid and
glEvalMesh are used in tandem to efficiently
generate and evaluate a series of evenly-spaced map domain values.
glEvalMesh steps through the integer domain of a one- or two-dimensional grid,
whose range is the domain of the evaluation maps specified by
glMap1 and
glMap2.
mode determines whether the resulting vertices are connected as
points,
lines,
or filled polygons.
In the one-dimensional case,
glEvalMesh1,
the mesh is generated as if the following code fragment were executed:
-
glBegin( type );
for ( i = i1; i <= i2; i += 1 )
glEvalCoord1( i$^cdot^DELTA u ~+~ u sub 1$ );
glEnd();
where
$ DELTA u ~=~ (u sub 2 ~-~ u sub 1 ) ^/^ n$
and $n$, $u sub 1$, and $u sub 2$ are the arguments to the most recent
glMapGrid1 command.
type is GL_POINTS if mode is GL_POINT,
or GL_LINES if mode is GL_LINE.
The one absolute numeric requirement is that if $i ~=~ n$, then the
value computed from $ i^cdot^DELTA u ~+~ u sub 1$ is exactly $u sub 2$.
In the two-dimensional case, glEvalMesh2, let
- $ DELTA u ~=~ mark ( u sub 2 ~-~ u sub 1 ) ^/^ n$
$ DELTA v ~=~ lineup ( v sub 2 ~-~ v sub 1 ) ^/^ m$,
where $n$, $u sub 1$, $u sub 2$, $m$, $v sub 1$, and $v sub 2$ are the
arguments to the most recent glMapGrid2 command. Then, if
mode is GL_FILL, the glEvalMesh2 command is equivalent
to:
-
for ( j = j1; j < j2; j += 1 ) {
glBegin( GL_QUAD_STRIP );
for ( i = i1; i <= i2; i += 1 ) {
glEvalCoord2( i$^cdot^DELTA u ~+~ u sub 1$, j$^cdot^DELTA v ~+~ v sub 1$ );
glEvalCoord2( i$^cdot^DELTA u ~+~ u sub 1$, (j+1)$^cdot^DELTA v ~+~ v sub 1$ );
}
glEnd();
}
If mode is GL_LINE, then a call to glEvalMesh2 is equivalent to:
-
for ( j = j1; j <= j2; j += 1 ) {
glBegin( GL_LINE_STRIP );
for ( i = i1; i <= i2; i += 1 )
glEvalCoord2( i$^cdot^DELTA u ~+~ u sub 1$, j$^cdot^DELTA v ~+~ v sub 1$ );
glEnd();
}
for ( i = i1; i <= i2; i += 1 ) {
glBegin( GL_LINE_STRIP );
for ( j = j1; j <= j1; j += 1 )
glEvalCoord2( i$^cdot^DELTA u ~+~ u sub 1$, j$^cdot^DELTA v ~+~ v sub 1 $ );
glEnd();
}
And finally, if mode is GL_POINT, then a call to
glEvalMesh2 is equivalent to:
-
glBegin( GL_POINTS );
for ( j = j1; j <= j2; j += 1 )
for ( i = i1; i <= i2; i += 1 )
glEvalCoord2( i$^cdot^DELTA u ~+~ u sub 1$, j$^cdot^DELTA v ~+~ v sub 1$ );
glEnd();
In all three cases, the only absolute numeric requirements are that if $i~=~n$,
then the value computed from $i^cdot^DELTA u ~+~ u sub 1$ is exactly $u
sub 2$, and if $j~=~m$, then the value computed from
$j ^cdot^ DELTA v ~+~ v sub 1$ is exactly $v sub 2$.
ERRORS
GL_INVALID_ENUM is generated if
mode is not an accepted value.
GL_INVALID_OPERATION is generated if glEvalMesh
is executed between the execution of glBegin
and the corresponding execution of glEnd.
ASSOCIATED GETS
glGet with argument
GL_MAP1_GRID_DOMAIN
glGet with argument
GL_MAP2_GRID_DOMAIN
glGet with argument
GL_MAP1_GRID_SEGMENTS
glGet with argument
GL_MAP2_GRID_SEGMENTS
SEE ALSO
glBegin(3G),
glEvalCoord(3G),
glEvalPoint(3G),
glMap1(3G),
glMap2(3G),
glMapGrid(3G)