GLMULTMATRIX
Section: Misc. Reference Manual Pages (3G)
Page Index
NAME
glMultMatrixd, glMultMatrixf
- multiply the current matrix with the specified matrix
C SPECIFICATION
void
glMultMatrixd(
const GLdouble
*m )
void
glMultMatrixf(
const GLfloat
*m )
delim $$
PARAMETERS
- m
-
Points to 16 consecutive values that are used as the elements of
a $4 ~times~ 4$ column-major matrix.
DESCRIPTION
glMultMatrix multiplies the current matrix with the one specified using
m, and
replaces the current matrix with the product.
The current matrix is determined by the current matrix mode (see glMatrixMode). It is either the projection matrix,
modelview matrix,
or the texture matrix.
EXAMPLES
If the current matrix is $C$, and the coordinates
to be transformed are, $v ~=~ (v[0], v[1], v[2], v[3])$.
Then the current transformation is $C ~times~ v$, or
down 130
{{ left ( matrix {
ccol { c[0] above c[1] above c[2] above c[3] }
ccol { c[4] above c[5] above c[6] above c[7] }
ccol { c[8] above c[9] above c[10] above c[11] }
ccol { c[12]~ above c[13]~ above c[14]~ above c[15]~ }
} right ) } ~~ times ~~
{left ( matrix {
ccol { v[0]~ above v[1]~ above v[2]~ above v[3]~ }
} right )} }
Calling glMultMatrix with an argument of $"m" ~=~ m[0], m[1], ..., m[15]$
replaces the current transformation with $(C ~times~ M) ~times~ v$,
or
down 130
{{ left ( matrix {
ccol { c[0] above c[1] above c[2] above c[3] }
ccol { c[4] above c[5] above c[6] above c[7] }
ccol { c[8] above c[9] above c[10] above c[11] }
ccol { c[12]~ above c[13]~ above c[14]~ above c[15]~ }
} right ) } ~~ times ~~
{ left ( matrix {
ccol { m[0] above m[1] above m[2] above m[3] }
ccol { m[4] above m[5] above m[6] above m[7] }
ccol { m[8] above m[9] above m[10] above m[11] }
ccol { m[12]~ above m[13]~ above m[14]~ above m[15]~ }
} right ) } ~~ times ~~
{left ( matrix {
ccol { v[0]~ above v[1]~ above v[2]~ above v[3]~ }
} right )} }
Where '$times$' denotes matrix multiplication, and
$v$ is represented as a $4 ~times~ 1$ matrix.
NOTES
While the elements of the matrix may be specified with
single or double precision, the GL may store or operate on these
values in less than single precision.
In many computer languages $4 ~times~ 4$ arrays are represented
in row-major order. The transformations just described
represent these matrices in column-major order.
The order of the multiplication is important. For example, if the current
transformation is a rotation, and glMultMatrix is called with a translation matrix,
the translation is done directly on the coordinates to be transformed,
while the rotation is done on the results of that translation.
ERRORS
GL_INVALID_OPERATION is generated if
glMultMatrix
is executed between the execution of
glBegin
and the corresponding execution of
glEnd.
ASSOCIATED GETS
glGet with argument
GL_MATRIX_MODE
glGet with argument
GL_COLOR_MATRIX
glGet with argument
GL_MODELVIEW_MATRIX
glGet with argument
GL_PROJECTION_MATRIX
glGet with argument
GL_TEXTURE_MATRIX
SEE ALSO
glLoadIdentity(3G),
glLoadMatrix(3G),
glMatrixMode(3G),
glPushMatrix(3G)