# GLULOOKAT

Section: Misc. Reference Manual Pages (3G)
Page Index

## NAME

gluLookAt - define a viewing transformation

## C SPECIFICATION

void gluLookAt( GLdouble eyeX,
```
GLdouble eyeY,
GLdouble eyeZ,
GLdouble centerX,
GLdouble centerY,
GLdouble centerZ,
GLdouble upX,
GLdouble upY,
GLdouble upZ )
```

delim \$\$

## PARAMETERS

eyeX, eyeY, eyeZ
Specifies the position of the eye point.
centerX, centerY, centerZ
Specifies the position of the reference point.
upX, upY, upZ
Specifies the direction of the up vector.

## DESCRIPTION

gluLookAt creates a viewing matrix derived from an eye point, a reference point indicating the center of the scene, and an UP vector.

The matrix maps the reference point to the negative z axis and the eye point to the origin. When a typical projection matrix is used, the center of the scene therefore maps to the center of the viewport. Similarly, the direction described by the UP vector projected onto the viewing plane is mapped to the positive y axis so that it points upward in the viewport. The UP vector must not be parallel to the line of sight from the eye point to the reference point.

Let

F ~=~ left ( down 20 { ~ matrix {
ccol {"centerX" above "centerY" above "centerZ"}
ccol { ~-~ above ~-~ above ~-~}
ccol {"eyeX" above "eyeY" above "eyeZ"} } } ~~ right )

Let UP be the vector \$("upX", "upY", "upZ")\$.

Then normalize as follows: f ~=~ F over {|| F ||}

UP sup prime ~=~ UP over {|| UP ||}

Finally, let \$s ~=~ f ~times~ UP sup prime\$, and \$u ~=~ s ~times~ f\$.

M is then constructed as follows: M ~=~ left ( matrix {
ccol { ~s above ~u above -f above 0 }
ccol { ~s above ~u above -f above 0 }
ccol { ~s above ~u above -f above 0 }
ccol { 0 above 0 above 0  above 1 } } ~~right )

and gluLookAt is equivalent to glMultMatrixf(M); glTranslated (-eyex, -eyey, -eyez);