subroutine sgehrd (N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)
SGEHRD
SGEHRD
Purpose:
SGEHRD reduces a real general matrix A to upper Hessenberg form H by an orthogonal similarity transformation: Q**T * A * Q = H .
Parameters:
N is INTEGER The order of the matrix A. N >= 0.
ILO
ILO is INTEGER
IHI
IHI is INTEGER It is assumed that A is already upper triangular in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally set by a previous call to SGEBAL; otherwise they should be set to 1 and N respectively. See Further Details. 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
A
A is REAL array, dimension (LDA,N) On entry, the N-by-N general matrix to be reduced. On exit, the upper triangle and the first subdiagonal of A are overwritten with the upper Hessenberg matrix H, and the elements below the first subdiagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors. See Further Details.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
TAU
TAU is REAL array, dimension (N-1) The scalar factors of the elementary reflectors (see Further Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to zero.
WORK
WORK is REAL array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The length of the array WORK. LWORK >= max(1,N). For good performance, LWORK should generally be larger. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value.
Author:
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
Further Details:
The matrix Q is represented as a product of (ihi-ilo) elementary reflectors Q = H(ilo) H(ilo+1) . . . H(ihi-1). Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on exit in A(i+2:ihi,i), and tau in TAU(i). The contents of A are illustrated by the following example, with n = 7, ilo = 2 and ihi = 6: on entry, on exit, ( a a a a a a a ) ( a a h h h h a ) ( a a a a a a ) ( a h h h h a ) ( a a a a a a ) ( h h h h h h ) ( a a a a a a ) ( v2 h h h h h ) ( a a a a a a ) ( v2 v3 h h h h ) ( a a a a a a ) ( v2 v3 v4 h h h ) ( a ) ( a ) where a denotes an element of the original matrix A, h denotes a modified element of the upper Hessenberg matrix H, and vi denotes an element of the vector defining H(i). This file is a slight modification of LAPACK-3.0's DGEHRD subroutine incorporating improvements proposed by Quintana-Orti and Van de Geijn (2006). (See DLAHR2.)
Definition at line 169 of file sgehrd.f.
Generated automatically by Doxygen for LAPACK from the source code.