subroutine sgemm (TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
SGEMM
SGEMM
Purpose:
SGEMM performs one of the matrix-matrix operations C := alpha*op( A )*op( B ) + beta*C, where op( X ) is one of op( X ) = X or op( X ) = X**T, alpha and beta are scalars, and A, B and C are matrices, with op( A ) an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
Parameters:
TRANSA is CHARACTER*1 On entry, TRANSA specifies the form of op( A ) to be used in the matrix multiplication as follows: TRANSA = 'N' or 'n', op( A ) = A. TRANSA = 'T' or 't', op( A ) = A**T. TRANSA = 'C' or 'c', op( A ) = A**T.
TRANSB
TRANSB is CHARACTER*1 On entry, TRANSB specifies the form of op( B ) to be used in the matrix multiplication as follows: TRANSB = 'N' or 'n', op( B ) = B. TRANSB = 'T' or 't', op( B ) = B**T. TRANSB = 'C' or 'c', op( B ) = B**T.
M
M is INTEGER On entry, M specifies the number of rows of the matrix op( A ) and of the matrix C. M must be at least zero.
N
N is INTEGER On entry, N specifies the number of columns of the matrix op( B ) and the number of columns of the matrix C. N must be at least zero.
K
K is INTEGER On entry, K specifies the number of columns of the matrix op( A ) and the number of rows of the matrix op( B ). K must be at least zero.
ALPHA
ALPHA is REAL On entry, ALPHA specifies the scalar alpha.
A
A is REAL array, dimension ( LDA, ka ), where ka is k when TRANSA = 'N' or 'n', and is m otherwise. Before entry with TRANSA = 'N' or 'n', the leading m by k part of the array A must contain the matrix A, otherwise the leading k by m part of the array A must contain the matrix A.
LDA
LDA is INTEGER On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANSA = 'N' or 'n' then LDA must be at least max( 1, m ), otherwise LDA must be at least max( 1, k ).
B
B is REAL array, dimension ( LDB, kb ), where kb is n when TRANSB = 'N' or 'n', and is k otherwise. Before entry with TRANSB = 'N' or 'n', the leading k by n part of the array B must contain the matrix B, otherwise the leading n by k part of the array B must contain the matrix B.
LDB
LDB is INTEGER On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. When TRANSB = 'N' or 'n' then LDB must be at least max( 1, k ), otherwise LDB must be at least max( 1, n ).
BETA
BETA is REAL On entry, BETA specifies the scalar beta. When BETA is supplied as zero then C need not be set on input.
C
C is REAL array, dimension ( LDC, N ) Before entry, the leading m by n part of the array C must contain the matrix C, except when beta is zero, in which case C need not be set on entry. On exit, the array C is overwritten by the m by n matrix ( alpha*op( A )*op( B ) + beta*C ).
LDC
LDC is INTEGER On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, m ).
Author:
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
Further Details:
Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd.
Definition at line 189 of file sgemm.f.
Generated automatically by Doxygen for LAPACK from the source code.