sgerq2.f

Section: LAPACK (3)
Updated: Tue Nov 14 2017
Page Index
 

NAME

sgerq2.f  

SYNOPSIS


 

Functions/Subroutines


subroutine sgerq2 (M, N, A, LDA, TAU, WORK, INFO)
SGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.  

Function/Subroutine Documentation

 

subroutine sgerq2 (integer M, integer N, real, dimension( lda, * ) A, integer LDA, real, dimension( * ) TAU, real, dimension( * ) WORK, integer INFO)

SGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.

Purpose:

 SGERQ2 computes an RQ factorization of a real m by n matrix A:
 A = R * Q.


 

Parameters:

M

          M is INTEGER
          The number of rows of the matrix A.  M >= 0.


N

          N is INTEGER
          The number of columns of the matrix A.  N >= 0.


A

          A is REAL array, dimension (LDA,N)
          On entry, the m by n matrix A.
          On exit, if m <= n, the upper triangle of the subarray
          A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
          if m >= n, the elements on and above the (m-n)-th subdiagonal
          contain the m by n upper trapezoidal matrix R; the remaining
          elements, with the array TAU, represent the orthogonal matrix
          Q as a product of elementary reflectors (see Further
          Details).


LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).


TAU

          TAU is REAL array, dimension (min(M,N))
          The scalar factors of the elementary reflectors (see Further
          Details).


WORK

          WORK is REAL array, dimension (M)


INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value


 

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

December 2016

Further Details:

  The matrix Q is represented as a product of elementary reflectors

     Q = H(1) H(2) . . . H(k), where k = min(m,n).

  Each H(i) has the form

     H(i) = I - tau * v * v**T

  where tau is a real scalar, and v is a real vector with
  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
  A(m-k+i,1:n-k+i-1), and tau in TAU(i).


 

Definition at line 125 of file sgerq2.f.  

Author

Generated automatically by Doxygen for LAPACK from the source code.


 

Index

NAME
SYNOPSIS
Functions/Subroutines
Function/Subroutine Documentation
subroutine sgerq2 (integer M, integer N, real, dimension( lda, * ) A, integer LDA, real, dimension( * ) TAU, real, dimension( * ) WORK, integer INFO)
Author