subroutine slaed7 (ICOMPQ, N, QSIZ, TLVLS, CURLVL, CURPBM, D, Q, LDQ, INDXQ, RHO, CUTPNT, QSTORE, QPTR, PRMPTR, PERM, GIVPTR, GIVCOL, GIVNUM, WORK, IWORK, INFO)
SLAED7 used by sstedc. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is dense.
SLAED7 used by sstedc. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is dense.
Purpose:
SLAED7 computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. This routine is used only for the eigenproblem which requires all eigenvalues and optionally eigenvectors of a dense symmetric matrix that has been reduced to tridiagonal form. SLAED1 handles the case in which all eigenvalues and eigenvectors of a symmetric tridiagonal matrix are desired. T = Q(in) ( D(in) + RHO * Z*Z**T ) Q**T(in) = Q(out) * D(out) * Q**T(out) where Z = Q**Tu, u is a vector of length N with ones in the CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. The eigenvectors of the original matrix are stored in Q, and the eigenvalues are in D. The algorithm consists of three stages: The first stage consists of deflating the size of the problem when there are multiple eigenvalues or if there is a zero in the Z vector. For each such occurrence the dimension of the secular equation problem is reduced by one. This stage is performed by the routine SLAED8. The second stage consists of calculating the updated eigenvalues. This is done by finding the roots of the secular equation via the routine SLAED4 (as called by SLAED9). This routine also calculates the eigenvectors of the current problem. The final stage consists of computing the updated eigenvectors directly using the updated eigenvalues. The eigenvectors for the current problem are multiplied with the eigenvectors from the overall problem.
Parameters:
ICOMPQ is INTEGER = 0: Compute eigenvalues only. = 1: Compute eigenvectors of original dense symmetric matrix also. On entry, Q contains the orthogonal matrix used to reduce the original matrix to tridiagonal form.
N
N is INTEGER The dimension of the symmetric tridiagonal matrix. N >= 0.
QSIZ
QSIZ is INTEGER The dimension of the orthogonal matrix used to reduce the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
TLVLS
TLVLS is INTEGER The total number of merging levels in the overall divide and conquer tree.
CURLVL
CURLVL is INTEGER The current level in the overall merge routine, 0 <= CURLVL <= TLVLS.
CURPBM
CURPBM is INTEGER The current problem in the current level in the overall merge routine (counting from upper left to lower right).
D
D is REAL array, dimension (N) On entry, the eigenvalues of the rank-1-perturbed matrix. On exit, the eigenvalues of the repaired matrix.
Q
Q is REAL array, dimension (LDQ, N) On entry, the eigenvectors of the rank-1-perturbed matrix. On exit, the eigenvectors of the repaired tridiagonal matrix.
LDQ
LDQ is INTEGER The leading dimension of the array Q. LDQ >= max(1,N).
INDXQ
INDXQ is INTEGER array, dimension (N) The permutation which will reintegrate the subproblem just solved back into sorted order, i.e., D( INDXQ( I = 1, N ) ) will be in ascending order.
RHO
RHO is REAL The subdiagonal element used to create the rank-1 modification.
CUTPNT
CUTPNT is INTEGER Contains the location of the last eigenvalue in the leading sub-matrix. min(1,N) <= CUTPNT <= N.
QSTORE
QSTORE is REAL array, dimension (N**2+1) Stores eigenvectors of submatrices encountered during divide and conquer, packed together. QPTR points to beginning of the submatrices.
QPTR
QPTR is INTEGER array, dimension (N+2) List of indices pointing to beginning of submatrices stored in QSTORE. The submatrices are numbered starting at the bottom left of the divide and conquer tree, from left to right and bottom to top.
PRMPTR
PRMPTR is INTEGER array, dimension (N lg N) Contains a list of pointers which indicate where in PERM a level's permutation is stored. PRMPTR(i+1) - PRMPTR(i) indicates the size of the permutation and also the size of the full, non-deflated problem.
PERM
PERM is INTEGER array, dimension (N lg N) Contains the permutations (from deflation and sorting) to be applied to each eigenblock.
GIVPTR
GIVPTR is INTEGER array, dimension (N lg N) Contains a list of pointers which indicate where in GIVCOL a level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i) indicates the number of Givens rotations.
GIVCOL
GIVCOL is INTEGER array, dimension (2, N lg N) Each pair of numbers indicates a pair of columns to take place in a Givens rotation.
GIVNUM
GIVNUM is REAL array, dimension (2, N lg N) Each number indicates the S value to be used in the corresponding Givens rotation.
WORK
WORK is REAL array, dimension (3*N+2*QSIZ*N)
IWORK
IWORK is INTEGER array, dimension (4*N)
INFO
INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = 1, an eigenvalue did not converge
Author:
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
Contributors:
Definition at line 262 of file slaed7.f.
Generated automatically by Doxygen for LAPACK from the source code.