subroutine slarrc (JOBT, N, VL, VU, D, E, PIVMIN, EIGCNT, LCNT, RCNT, INFO)
SLARRC computes the number of eigenvalues of the symmetric tridiagonal matrix.
SLARRC computes the number of eigenvalues of the symmetric tridiagonal matrix.
Purpose:
Find the number of eigenvalues of the symmetric tridiagonal matrix T that are in the interval (VL,VU] if JOBT = 'T', and of L D L^T if JOBT = 'L'.
Parameters:
JOBT is CHARACTER*1 = 'T': Compute Sturm count for matrix T. = 'L': Compute Sturm count for matrix L D L^T.
N
N is INTEGER The order of the matrix. N > 0.
VL
VL is REAL The lower bound for the eigenvalues.
VU
VU is REAL The upper bound for the eigenvalues.
D
D is REAL array, dimension (N) JOBT = 'T': The N diagonal elements of the tridiagonal matrix T. JOBT = 'L': The N diagonal elements of the diagonal matrix D.
E
E is REAL array, dimension (N) JOBT = 'T': The N-1 offdiagonal elements of the matrix T. JOBT = 'L': The N-1 offdiagonal elements of the matrix L.
PIVMIN
PIVMIN is REAL The minimum pivot in the Sturm sequence for T.
EIGCNT
EIGCNT is INTEGER The number of eigenvalues of the symmetric tridiagonal matrix T that are in the interval (VL,VU]
LCNT
LCNT is INTEGER
RCNT
RCNT is INTEGER The left and right negcounts of the interval.
INFO
INFO is INTEGER
Author:
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
Contributors:
Definition at line 139 of file slarrc.f.
Generated automatically by Doxygen for LAPACK from the source code.