subroutine ssygs2 (ITYPE, UPLO, N, A, LDA, B, LDB, INFO)
SSYGS2 reduces a symmetric definite generalized eigenproblem to standard form, using the factorization results obtained from spotrf (unblocked algorithm).
SSYGS2 reduces a symmetric definite generalized eigenproblem to standard form, using the factorization results obtained from spotrf (unblocked algorithm).
Purpose:
SSYGS2 reduces a real symmetric-definite generalized eigenproblem to standard form. If ITYPE = 1, the problem is A*x = lambda*B*x, and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T) If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T *A*L. B must have been previously factorized as U**T *U or L*L**T by SPOTRF.
Parameters:
ITYPE is INTEGER = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T); = 2 or 3: compute U*A*U**T or L**T *A*L.
UPLO
UPLO is CHARACTER*1 Specifies whether the upper or lower triangular part of the symmetric matrix A is stored, and how B has been factorized. = 'U': Upper triangular = 'L': Lower triangular
N
N is INTEGER The order of the matrices A and B. N >= 0.
A
A is REAL array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U', the leading n by n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading n by n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if INFO = 0, the transformed matrix, stored in the same format as A.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
B
B is REAL array, dimension (LDB,N) The triangular factor from the Cholesky factorization of B, as returned by SPOTRF.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
INFO
INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value.
Author:
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
Definition at line 129 of file ssygs2.f.
Generated automatically by Doxygen for LAPACK from the source code.