subroutine zhesv_aa (UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK, INFO)
ZHESV_AA computes the solution to system of linear equations A * X = B for HE matrices
ZHESV_AA computes the solution to system of linear equations A * X = B for HE matrices
Purpose:
ZHESV_AA computes the solution to a complex system of linear equations A * X = B, where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS matrices. Aasen's algorithm is used to factor A as A = U * T * U**H, if UPLO = 'U', or A = L * T * L**H, if UPLO = 'L', where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and T is Hermitian and tridiagonal. The factored form of A is then used to solve the system of equations A * X = B.
Parameters:
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.
N
N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
A
A is COMPLEX*16 array, dimension (LDA,N) On entry, the Hermitian matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if INFO = 0, the tridiagonal matrix T and the multipliers used to obtain the factor U or L from the factorization A = U*T*U**H or A = L*T*L**H as computed by ZHETRF_AA.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N) On exit, it contains the details of the interchanges, i.e., the row and column k of A were interchanged with the row and column IPIV(k).
B
B is COMPLEX*16 array, dimension (LDB,NRHS) On entry, the N-by-NRHS right hand side matrix B. On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
WORK
WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The length of WORK. LWORK >= MAX(1,2*N,3*N-2), and for best performance LWORK >= max(1,N*NB), where NB is the optimal blocksize for ZHETRF. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular, so the solution could not be computed.
Author:
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
Definition at line 164 of file zhesv_aa.f.
Generated automatically by Doxygen for LAPACK from the source code.