zhetf2_rook.f

Section: LAPACK (3)
Updated: Tue Nov 14 2017
Page Index
 

NAME

zhetf2_rook.f  

SYNOPSIS


 

Functions/Subroutines


subroutine zhetf2_rook (UPLO, N, A, LDA, IPIV, INFO)
ZHETF2_ROOK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method (unblocked algorithm).  

Function/Subroutine Documentation

 

subroutine zhetf2_rook (character UPLO, integer N, complex*16, dimension( lda, * ) A, integer LDA, integer, dimension( * ) IPIV, integer INFO)

ZHETF2_ROOK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method (unblocked algorithm).

Purpose:

 ZHETF2_ROOK computes the factorization of a complex Hermitian matrix A
 using the bounded Bunch-Kaufman ("rook") diagonal pivoting method:

    A = U*D*U**H  or  A = L*D*L**H

 where U (or L) is a product of permutation and unit upper (lower)
 triangular matrices, U**H is the conjugate transpose of U, and D is
 Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

 This is the unblocked version of the algorithm, calling Level 2 BLAS.


 

Parameters:

UPLO

          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          Hermitian matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular


N

          N is INTEGER
          The order of the matrix A.  N >= 0.


A

          A is COMPLEX*16 array, dimension (LDA,N)
          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
          n-by-n upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading n-by-n lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.

          On exit, the block diagonal matrix D and the multipliers used
          to obtain the factor U or L (see below for further details).


LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).


IPIV

          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D.

          If UPLO = 'U':
             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
             interchanged and D(k,k) is a 1-by-1 diagonal block.

             If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
             columns k and -IPIV(k) were interchanged and rows and
             columns k-1 and -IPIV(k-1) were inerchaged,
             D(k-1:k,k-1:k) is a 2-by-2 diagonal block.

          If UPLO = 'L':
             If IPIV(k) > 0, then rows and columns k and IPIV(k)
             were interchanged and D(k,k) is a 1-by-1 diagonal block.

             If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
             columns k and -IPIV(k) were interchanged and rows and
             columns k+1 and -IPIV(k+1) were inerchaged,
             D(k:k+1,k:k+1) is a 2-by-2 diagonal block.


INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -k, the k-th argument had an illegal value
          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
               has been completed, but the block diagonal matrix D is
               exactly singular, and division by zero will occur if it
               is used to solve a system of equations.


 

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

November 2013

Further Details:

  If UPLO = 'U', then A = U*D*U**H, where
     U = P(n)*U(n)* ... *P(k)U(k)* ...,
  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  that if the diagonal block D(k) is of order s (s = 1 or 2), then

             (   I    v    0   )   k-s
     U(k) =  (   0    I    0   )   s
             (   0    0    I   )   n-k
                k-s   s   n-k

  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  and A(k,k), and v overwrites A(1:k-2,k-1:k).

  If UPLO = 'L', then A = L*D*L**H, where
     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  that if the diagonal block D(k) is of order s (s = 1 or 2), then

             (   I    0     0   )  k-1
     L(k) =  (   0    I     0   )  s
             (   0    v     I   )  n-k-s+1
                k-1   s  n-k-s+1

  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).


 

Contributors:

  November 2013,  Igor Kozachenko,
                  Computer Science Division,
                  University of California, Berkeley

  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                  School of Mathematics,
                  University of Manchester

  01-01-96 - Based on modifications by
    J. Lewis, Boeing Computer Services Company
    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA


 

Definition at line 196 of file zhetf2_rook.f.  

Author

Generated automatically by Doxygen for LAPACK from the source code.


 

Index

NAME
SYNOPSIS
Functions/Subroutines
Function/Subroutine Documentation
subroutine zhetf2_rook (character UPLO, integer N, complex*16, dimension( lda, * ) A, integer LDA, integer, dimension( * ) IPIV, integer INFO)
Author