double precision function zla_hercond_x (UPLO, N, A, LDA, AF, LDAF, IPIV, X, INFO, WORK, RWORK)
ZLA_HERCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian indefinite matrices.
ZLA_HERCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian indefinite matrices.
Purpose:
ZLA_HERCOND_X computes the infinity norm condition number of op(A) * diag(X) where X is a COMPLEX*16 vector.
Parameters:
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.
N
N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0.
A
A is COMPLEX*16 array, dimension (LDA,N) On entry, the N-by-N matrix A.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
AF
AF is COMPLEX*16 array, dimension (LDAF,N) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ZHETRF.
LDAF
LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by CHETRF.
X
X is COMPLEX*16 array, dimension (N) The vector X in the formula op(A) * diag(X).
INFO
INFO is INTEGER = 0: Successful exit. i > 0: The ith argument is invalid.
WORK
WORK is COMPLEX*16 array, dimension (2*N). Workspace.
RWORK
RWORK is DOUBLE PRECISION array, dimension (N). Workspace.
Author:
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
Definition at line 135 of file zla_hercond_x.f.
Generated automatically by Doxygen for LAPACK from the source code.