subroutine zlatsqr (M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK, INFO)
Purpose:
SLATSQR computes a blocked Tall-Skinny QR factorization of an M-by-N matrix A, where M >= N: A = Q * R .
Parameters:
M is INTEGER The number of rows of the matrix A. M >= 0.
N
N is INTEGER The number of columns of the matrix A. M >= N >= 0.
MB
MB is INTEGER The row block size to be used in the blocked QR. MB > N.
NB
NB is INTEGER The column block size to be used in the blocked QR. N >= NB >= 1.
A
A is COMPLEX*16 array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the elements on and above the diagonal of the array contain the N-by-N upper triangular matrix R; the elements below the diagonal represent Q by the columns of blocked V (see Further Details).
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).
T
T is COMPLEX*16 array, dimension (LDT, N * Number_of_row_blocks) where Number_of_row_blocks = CEIL((M-N)/(MB-N)) The blocked upper triangular block reflectors stored in compact form as a sequence of upper triangular blocks. See Further Details below.
LDT
LDT is INTEGER The leading dimension of the array T. LDT >= NB.
WORK
(workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
LWORK
The dimension of the array WORK. LWORK >= NB*N. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
Q(1) is computed by GEQRT, which represents Q(1) by Householder vectors stored under the diagonal of rows 1:MB of A, and by upper triangular block reflectors, stored in array T(1:LDT,1:N). For more information see Further Details in GEQRT.
Q(i) for i>1 is computed by TPQRT, which represents Q(i) by Householder vectors stored in rows [(i-1)*(MB-N)+N+1:i*(MB-N)+N] of A, and by upper triangular block reflectors, stored in array T(1:LDT,(i-1)*N+1:i*N). The last Q(k) may use fewer rows. For more information see Further Details in TPQRT.
For more details of the overall algorithm, see the description of Sequential TSQR in Section 2.2 of [1].
[1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,” J. Demmel, L. Grigori, M. Hoemmen, J. Langou, SIAM J. Sci. Comput, vol. 34, no. 1, 2012
Definition at line 151 of file zlatsqr.f.
Generated automatically by Doxygen for LAPACK from the source code.