sgt-inertia - Gem-collecting puzzle
sgt-inertia [--generate n] [--print wxh [--with-solutions] [--scale n] [--colour]] [game-parameters|game-ID|random-seed]
You are a small green ball sitting in a grid full of obstacles. Your aim is to collect all the gems without running into any mines.
You can move the ball in any orthogonal or diagonal direction. Once the ball starts moving, it will continue until something stops it. A wall directly in its path will stop it (but if it is moving diagonally, it will move through a diagonal gap between two other walls without stopping). Also, some of the squares are ‘stops’; when the ball moves on to a stop, it will stop moving no matter what direction it was going in. Gems do not stop the ball; it picks them up and keeps on going.
Running into a mine is fatal. Even if you picked up the last gem in the same move which then hit a mine, the game will count you as dead rather than victorious.
This game was originally implemented for Windows by Ben Olmstead (http://xn13.com/), who was kind enough to release his source code on request so that it could be re-implemented for this collection.
You can move the ball in any of the eight directions using the numeric keypad. Alternatively, if you click the left mouse button on the grid, the ball will begin a move in the general direction of where you clicked.
If you use the ‘Solve’ function on this game, the program will compute a path through the grid which collects all the remaining gems and returns to the current position. A hint arrow will appear on the ball indicating the direction in which you should move to begin on this path. If you then move in that direction, the arrow will update to indicate the next direction on the path. You can also press Space to automatically move in the direction of the hint arrow. If you move in a different direction from the one shown by the arrow, arrows will be shown only if the puzzle is still solvable.
All the actions described below are also available. In particular, if you do run into a mine and die, you can use the Undo function and resume playing from before the fatal move. The game will keep track of the number of times you have done this.
These parameters are available from the ‘Custom...’ option on the ‘Type’ menu.
These actions are all available from the ‘Game’ menu and via keyboard shortcuts, in addition to any game-specific actions.
(On Mac OS X, to conform with local user interface standards, these actions are situated on the ‘File’ and ‘Edit’ menus instead.)
The Load and Save operations preserve your entire game history (so you can save, reload, and still Undo and Redo things you had done before saving).
Some games (such as Solo) are capable of solving a game ID you have typed in from elsewhere. Other games (such as Rectangles) cannot solve a game ID they didn't invent themself, but when they did invent the game ID they know what the solution is already. Still other games (Pattern) can solve some external game IDs, but only if they aren't too difficult.
The ‘Solve’ command adds the solved state to the end of the undo chain for the puzzle. In other words, if you want to go back to solving it yourself after seeing the answer, you can just press Undo.
There are two ways to save a game specification out of a puzzle and recreate it later, or recreate it in somebody else's copy of the same puzzle.
The ‘Specific’ and ‘Random Seed’ options from the ‘Game’ menu (or the ‘File’ menu, on Mac OS X) each show a piece of text (a ‘game ID’) which is sufficient to reconstruct precisely the same game at a later date.
You can enter either of these pieces of text back into the program (via the same ‘Specific’ or ‘Random Seed’ menu options) at a later point, and it will recreate the same game. You can also use either one as a command line argument (on Windows or Unix); see below for more detail.
The difference between the two forms is that a descriptive game ID is a literal description of the initial state of the game, whereas a random seed is just a piece of arbitrary text which was provided as input to the random number generator used to create the puzzle. This means that:
(Use the ‘About’ menu option to find out the version number of the program. Programs with the same version number running on different platforms should still be random-seed compatible.)
A descriptive game ID starts with a piece of text which encodes the parameters of the current game (such as grid size). Then there is a colon, and after that is the description of the game's initial state. A random seed starts with a similar string of parameters, but then it contains a hash sign followed by arbitrary data.
If you enter a descriptive game ID, the program will not be able to show you the random seed which generated it, since it wasn't generated from a random seed. If you enter a random seed, however, the program will be able to show you the descriptive game ID derived from that random seed.
Note that the game parameter strings are not always identical between the two forms. For some games, there will be parameter data provided with the random seed which is not included in the descriptive game ID. This is because that parameter information is only relevant when generating puzzle grids, and is not important when playing them. Thus, for example, the difficulty level in Solo (sgt-solo(6)) is not mentioned in the descriptive game ID.
These additional parameters are also not set permanently if you type in a game ID. For example, suppose you have Solo set to ‘Advanced’ difficulty level, and then a friend wants your help with a ‘Trivial’ puzzle; so the friend reads out a random seed specifying ‘Trivial’ difficulty, and you type it in. The program will generate you the same ‘Trivial’ grid which your friend was having trouble with, but once you have finished playing it, when you ask for a new game it will automatically go back to the ‘Advanced’ difficulty which it was previously set on.
The ‘Type’ menu, if present, may contain a list of preset game settings. Selecting one of these will start a new random game with the parameters specified.
The ‘Type’ menu may also contain a ‘Custom’ option which allows you to fine-tune game parameters. The parameters available are specific to each game and are described in the following sections.
(This section does not apply to the Mac OS X version.)
The games in this collection deliberately do not ever save information on to the computer they run on: they have no high score tables and no saved preferences. (This is because I expect at least some people to play them at work, and those people will probably appreciate leaving as little evidence as possible!)
However, if you do want to arrange for one of these games to default to a particular set of parameters, you can specify them on the command line.
The easiest way to do this is to set up the parameters you want using the ‘Type’ menu (see above), and then to select ‘Random Seed’ from the ‘Game’ or ‘File’ menu (see above). The text in the ‘Game ID’ box will be composed of two parts, separated by a hash. The first of these parts represents the game parameters (the size of the playing area, for example, and anything else you set using the ‘Type’ menu).
If you run the game with just that parameter text on the command line, it will start up with the settings you specified.
For example: if you run Cube (see sgt-cube(6)), select ‘Octahedron’ from the ‘Type’ menu, and then go to the game ID selection, you will see a string of the form ‘o2x2#338686542711620’. Take only the part before the hash (‘o2x2’), and start Cube with that text on the command line: ‘sgt-cube o2x2’.
If you copy the entire game ID on to the command line, the game will start up in the specific game that was described. This is occasionally a more convenient way to start a particular game ID than by pasting it into the game ID selection box.
(You could also retrieve the encoded game parameters using the ‘Specific’ menu option instead of ‘Random Seed’, but if you do then some options, such as the difficulty level in Solo, will be missing. See above for more details on this.)
(This section only applies to the Unix port.)
In addition to being able to specify game parameters on the command line (see above), there are various other options:
If game parameters are specified on the command-line, they will be used to generate the game IDs; otherwise a default set of parameters will be used.
The most common use of this option is in conjunction with --print, in which case its behaviour is slightly different; see below.
On each page of puzzles, there will be w across and h down. If there are more puzzles than w×h, more than one page will be printed.
If --generate has also been specified, the invented game IDs will be used to generate the printed output. Otherwise, a list of game IDs is expected on standard input (which can be descriptive or random seeds; see above), in the same format produced by --generate.
For example:
sgt-net --generate 12 --print 2x3 7x7w | lpr
will generate two pages of printed Net puzzles (each of which will have a 7×7 wrapping grid), and pipe the output to the lpr command, which on many systems will send them to an actual printer.
There are various other options which affect printing; see below.
If --generate has also been specified, the invented game IDs will be used to generate the printed output. Otherwise, a list of game IDs is expected on standard input (which can be descriptive or random seeds; see above), in the same format produced by --generate.
For example:
sgt-net --generate 12 --save game --save-suffix .sav
will generate twelve Net saved-game files with the names game0.sav to game11.sav.
The following options are only meaningful if --print is also specified:
Full documentation in /usr/share/doc/sgt-puzzles/puzzles.txt.gz.